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Abstract

We investigate the model of three competitive species, each of which, in isola-
tion, admits Gompertz growth. A well-known theorem by M.W.Hirsch guar-
antees the existence of carrying simplex. Based on this, we compare three di-
mensional competitive Gompertz models with three dimensional competitive
Lotka-Volterra models, and we find that each Gompertz model has a cor-
responding Lotka-Volterra model with identical nullclines. We then present
the complete classification for nullcline stability and arrive at the total of 33
stable nullcline classes, and show that in 27 of these classes all the compact
limit sets are fixed points. Despite the common results, we go on to show that
the behavior on the carrying simplex of Gompertz systems is subtly different
from that on Lotka-Volterra systems. The number of limit cycles is finite
in 5 of the remaining 6 classes, and that only the classes 26 and 27 admit
Hopf bifurcations and the other 4 do not. The class 27, which has a hetero-
clinic polycycle, contains a system to have May-Leonard phenomenon: the
existence of nonperiodic oscillation and still admits one to have at least two
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limit cycles. The numerical stimulation reveals that there are some systems
in class 28 with two limit cycles.

Keywords: competitive system, carrying simplex, Gompertz model,
classification, Hopf bifurcation, nonperiodic oscillation

1. Introduction

There is an extensive literature in population ecology on deterministic
models of the Kolmogorov form

dxi

dt
= xifi(x1, x2, ..., xn), 1 ≤ i ≤ n, xi ≥ 0, (1)

where xi represents the population density of the ith species and fi(x) rep-
resents the per capita growth rate of the ith species. The system (1) is called
competitive if f(x) is continuously differentiable and ∂fi

∂xj
≤ 0 on the closed

positive cone Rn
+ for i ̸= j , and totally competitive if ∂fi

∂xj
< 0 on Rn

+ for

all i, j. Much of the literature on Kolmogorov system (1) has focused on
competitive systems. Smale [1] showed that any vector field on the standard
(n− 1)-simplex in Rn can be embedded in a smooth totally competitive sys-
tem on Rn

+, for which the simplex is an attractor. Hirsch [2] proved that
every positive limit set lies in an invariant open (n − 1)-cell, and that the
flow in any limit set of system (1) is conjugate to the flow in some invariant
set of a Lipschitz vector field in Rn−1. Hirsch [3] showed that if system (1) is
totally competitive and dissipative on Rn

+ with the origin as a repeller, then
every nontrivial trajectory is asymptotic to one in Σ, where Σ is homeomor-
phic to the standard (n−1)-simplex ∆n−1 by radial projection. According to
Zeeman [4], the Σ is called carrying simplex. This theory is very powerful for
three-dimensional competitive system : Smith [5] proved Poincaré-Bendixson
Theorem holds for three-dimensional competitive systems, and Hirsch [6] and
Smith [7] provided the classification for limit sets of three-dimensional com-
petitive systems in some sense.

In ecology, the most frequently used model is the Lotka-Volterra system,
that is, each per capita growth function fi is affine and chosen as the logistic
growth. In this circumstance, system (1) reads as
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dxi

dt
= xi(ri −

n∑
j=1

aijxj), 1 ≤ i ≤ n, xi ≥ 0. (2)

The system (2) is a totally competitive system if all parameters ri, aij are
positive. The set CLV(3) of all these three dimensional competitive Lotka-
Volterra systems corresponds to parameter space intR12

+ one to one. Based
on the theory of the carrying simplex, Zeeman [4] used a geometric analysis
of nullclines of a Lotka-Volterra system to define a combinatorial equivalence
relation on the space, named nullcline equivalence, by simple algebraic in-
equalities on the parameters. A vector field F ∈ CLV(3) is said to be nullcline
stable if its equivalence class is an open set in CLV(3). In this remarkable
paper, Zeeman arrived at exactly 33 stable nullcline classes, and showed that
in 25 of these classes there are no periodic orbits, whose dynamics are fully
described; she also proved that Hopf bifurcations occur in each of six stable
nullcline classes among the remaining eight classes but not in the other two.
Van den Driessche and Zeeman [8] ruled out periodic orbits of the last two
classes. This is due to Zeeman’s fundamental classification theory, and many
researchers have investigated multiplicity of limit cycles, see Hofbauer and So
[9], Xiao and Li [10], Lu and Luo [11, 12], Gyllenberg and Yan [13], Gyllen-
berg, Yan and Wang[14]. Classification results for other three-dimensional
competitive systems in this spirit were provided by Li and Smith [15] and
van den Driessche and Zeeman [16].

To be notable, the logistic growth is not suitable for some populations,
while a lot of works, such as Burton [17], Laird [18], Simpson-Herren and
Lloyd [19], Steel [20] and Sullivan and Salmon [21], showed the suitability of
the Gompertz growth law (that is, the per capita growth rate is the logarithm
ln K

x
developed by Gompertz (1825) which was derived from the actuarial

model) to tumor growth. They got the results mainly by curve fitting with
actual data. The Gompertz law shows a better data fit than other growth
laws such as the logistic model when tumor data involves a wide range of sizes
[20]. It seems that no strong biological or physical argument can interpret the
reason that the Gompertz model fits actual tumor data primely. Gompertz
equation ever aided in the design of successful clinical trials [22, 23] though
the frequent use is empirical and based upon data fitting, and it is often
accepted in the study of cancer and the therapy. For survey article we refer
[24]. Universally we have almost applied Gompertz to represent the growth
of microorganisms [25, 26] and some creature [27, 28]. A lot of research on
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mobile communications has been carried out with particular emphasis on
their diffusion at national (Botelho Pinto, 2004) as well as at international
level (Fildes Kumar, 2002; Gruber, 2005) during recent years. Note that the
Gompertz function reaches the maximum rate of growth at an earlier phase
than the logistic, it is the best chosen to show the dynamics of the diffusion
process whose growth is so rapid at an early phase while slow relatively when
approaching the saturation level. It becomes visible that Gompertz model is
appropriate enough for precise fitting and predicting the diffusion of mobile
telephony in this case, see [29, 30, 31, 32, 33]. When the competition is
among several regions or countries, it is reasonable to model multidimensional
Gompertz equations. Yu, Wang and Lu [34] proposed the three-dimensional
Gompertz model

dx1

dt
= x1 ln

b1
x1 + a12x2 + a13x3

,

dx2

dt
= x2 ln

b2
a21x1 + x2 + a23x3

,

dx3

dt
= x3 ln

b3
a31x1 + a32x2 + x3

,

(3)

and then they analyzed the existence of local stability of all equilibria, ruled
out the existence of nontrivial periodic solutions and obtained global stability
for some cases.

This paper will present the complete classification of nullcline stabili-
ty for competitive three-dimensional Gompertz models by using the idea of
Zeeman [4]. We compare three dimensional competitive Gompertz model-
s with three dimensional competitive Lotka-Volterra models, and we find
that each Gompertz model has a corresponding Lotka-Volterra model with
identical nullclines. There are exactly 33 stable equivalence classes of three
dimensional Gompertz models, in 27 of which all their trajectories converge
to fixed points. All fixed points are hyperbolic except the interior fixed point
in classes 26 and 27. Despite the common results, we go on to show that
the behavior on the carrying simplex of Gompertz systems is subtly different
from that on Lotka-Volterra systems. We shall prove that only two classes
(classes 26 and 27) can occur Hopf bifurcation. It is shown that the number
of limit cycles of system (3) is finite if it has not any heteroclinic polycycle
in R3

+. In the class admitting a heteroclinic polycycle (class 27), we provide
the criteria for the interior fixed point to be globally asymptotically stable
and for the system to possess May-Leonard phenomenon: the existence of
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nonperiodic oscillation, and exhibit the results to bifurcate one or two limit
cycles. The numerical stimulation reveals that there are some systems in
class 28 with two limit cycles. Whether the classes 29, 30 and 31 have limit
cycles or not remains open. The maximum number of limit cycles that occur
in each of classes 26 to 31 remains open.

2. Classification by nullcline equivalence

Consider an n-dimensional competitive Gompertz system

dxi

dt
= xi ln

bi∑n
j=1 aijxj

, 1 ≤ i ≤ n, xi ≥ 0, (4)

where aij, bi > 0, i, j = 1, 2, ..., n.
We define R(0) = {x ∈ Rn

+ : α(x) = 0} and Σ = ∂R(0) \ R(0), where
α(x) denotes the alpha limit set of x and ∂R(0) denotes the boundary of
R(0) taken in Rn

+. The unit simplex in Rn
+ is defined to be ∆n−1 = {x ∈

Rn
+ :

∑n
i=1 xi = 1}.

Proposition 2.1. Given system (4), every trajectory in Rn
+ \ {0} is asymp-

totic to one in Σ, and Σ is a Lipschitz submanifold, homeomorphic to ∆n−1

in Rn
+ by radial projection.

Proof. The proof is just like that of Lotka-Volterra in [4], the only difference
is that ∂fi/∂xj = −aij(

∑n
j=1 aijxj)

−1 at any x ̸= 0 for all i, j, where fi(x) =
ln(bi/

∑n
j=1 aijxj).

Denote by

CG(n) = {F : Rn
+ → Rn, Fi(x) = xi ln

bi∑n
j=1 aijxj

, aij, bi > 0, 1 ≤ i, j ≤ n}

the space of n-dimensional competitive Gompertz systems. Let A = (aij)
with aii = 1, i = 1, 2, ..., n.

2.1. Classification for the three-dimensional model

Let F ∈ CG(n). The nullclines of the system ẋ = F (x) are given by

ẋi = 0 ⇔ xi ln
bi

(Ax)i
= 0 ⇔ (Ax)i = bi or xi = 0.
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Now the classification program in [4] carry over to the Gompertz model here
in a straightforward way, that is this part works just like Lotka-Volterra
systems, as in this reference, so we don’t need to re-do it.

For the two-dimensional case, the nullcline configuration of a vector field
F ∈ CG(2) is given by the values of sgn((ARi)j − bj) for i ̸= j modulo
permutation of the indices, and F and G are said to be nullcline equivalent
if they have the same nullcline configurations, where F,G ∈ CG(2).

Proposition 2.2. Let F ∈ CG(2). F is nullcline stable ⇔ sgn((ARi)j −
bj) ̸= 0, for i ̸= j.

Corollary 2.3. There are 3 stable nullcline classes and they have open dense
union in CG(2).

Figure 1: The behavior on the carrying simplex Σ replaced by ∆1 of the two-dimensional
system. A fixed point is represented by a closed dot • if it attracts on Σ, by an open dot
◦ if it repels on Σ.

We utilize the phase portrait to describe these stable nullcline classes and
in Fig. 1 we list the dynamics on Σ replaced by ∆1 of a representative from
each class.

For the three-dimensional case, the nullcline configuration of a vector field
F ∈ CG(3) is given by the values of sgn((ARi)j − bj) and sgn((AQi)i − bi)
for distinct i, j, modulo permutation of the indices, and F and G are said to
be nullcline equivalent if they have the same nullcline configurations, where
F,G ∈ CG(3).

Proposition 2.4. Let F ∈ CG(3). F is nullcline stable ⇔ sgn((ARi)j −
bj), sgn((AQi)i − bi) ̸= 0, for i ̸= j.

Proposition 2.5. If F ∈ CG(3) is nullcline stable, then all fixed points on
∂Σ are hyperbolic, which implies any interior fixed point in R3

+, if it exists,
is simple.

The proposition ensures that only P or a closed orbit or a heteroclinic
cycle can be the limit set in intΣ.

6



Proposition 2.6. Let F ∈ CG(3) be nullcline stable. Suppose that the axial
fixed points Ri, the planar fixed points Qk and the interior fixed point P exist,
with index I(Ri), I(Qk) and I(P ) respectively on Σ, we set I(Qk) = 0 if the
planar fixed point Qk does not exist, and I(P ) = 0 if the interior fixed point
P does not exist. Then

I(R1) + I(R2) + I(R3) + 2(I(Q1) + I(Q2) + I(Q3)) + 4I(P ) = 1.

Theorem 2.7. There are totally 33 stable nullcline classes in CG(3).

To be notable, Theorem 2.7 is proved by counting all the combinatorial
possibilities for the non-zero values of sgn((ARi)j − bj) and sgn((AQk)k− bk)
modulo permutation of the indices, which needs care since these values are
dependent. The six values of sgn((ARi)j − bj) form 26 possibilities and then
reduce to 16 possibilities modulo permutation of the indices. The values
of sgn((ARi)j − bj) correspond to the ordering of the Ni intercepts of the
axial, and then ensures which planar fixed points Qk lie in R3

+. Using the
index formula in Proposition 2.6, we count 57 possibilities for the non-zero
values of sgn((ARi)j − bj) and sgn((AQk)k − bk) concerning the planar fixed
points and the interior fixed point, and then reduce to 45 possibilities modulo
permutation of the indices. Then we arrive at the total of 33 stable nullcline
classes by ruling out all nonexistence cases, which is the same as that of the
three-dimensional competitive Lotka-Volterra systems.

Despite the common results, there are details such as the dynamics on
the simplex that differ, so we again list them in Fig. 2 and Fig. 3 to be
more explicit, which display all the dynamical properties clearly. In Fig. 3
we can see that the dynamics on the simplex of class 28 to class 31 is indeed
different from that of Lotka-Volterra systems and the details will be given in
next section.

We mark the interior fixed point P (if exists) in intΣ and by the inter-
section of its hyperbolic manifolds in classes 19 to 25, where P is a saddle
on Σ, while by the symbol ⊙ in classes 26 and 27 since the nullcline con-
figuration does not contain enough information to determine the dynamical
type of P , and it also indicates that there may be any number of periodic
orbits surrounding P . Propositions 3.12 and 3.13 will show that there are no
nontrivial periodic orbits in classes 32 and 33 and P is hyperbolic in classes
28 to 33, which is a repeller on Σ in classes 28, 30 and 32 (see Propositions
3.8, 3.10 and 3.12) and an attractor in classes 29, 31 and 33 (see Propositions
3.9, 3.11 and 3.13), respectively. So we in advance mark the clear global
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Figure 2: The phase portraits on Σ of three-dimensional stable nullcline classes without
interior fixed point. The fixed-point notation is as in Fig. 1.

dynamics in classes 32 and 33 and local dynamics in classes 28 to 31 in Fig.
3, where the big circle ⃝ denotes a region of unknown dynamics, which also
indicates that there may exist some periodic orbits here.

3. Hopf bifurcations

3.1. Algebraic observations

Now, we are concerned with the behavior on the carrying simplex of each
class. Without loss of generality, we assume that bi = 1 for i = 1, 2, 3.
Otherwise, we scale system (3) by the linear transformation yi = xi/bi.
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Figure 3: The phase portraits on Σ of three-dimensional stable nullcline classes with
interior fixed point.

Then the system (3) has the form:

dx1

dt
= x1 ln

1

x1 + a12x2 + a13x3

,

dx2

dt
= x2 ln

1

a21x1 + x2 + a23x3

,

dx3

dt
= x3 ln

1

a31x1 + a32x2 + x3

.

(5)

Now the system is completely determined by the matrix A = (aij) which can
be denoted by A(a12, a13, a21, a23, a31, a32). We shall abuse notation by using
system (5): ẋ = F (x) and A interchangeably.

The Poincaré-Bendixson theory to the flow on Σ immediately implies the
following proposition.

Proposition 3.1. There are no periodic orbits in stable nullcline classes 1
to 25.

We shall ambiguously use 1 to denote the vector (1, 1, 1)τ and the real
number 1.
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Now, if the system A has an interior fixed point P = (p1, p2, p3), then we
have AP τ = 1, since it satisfies the equations Axτ = 1, where x = (x1, x2, x3).

Let D = det(A) and Di denote the determinant of the corresponding
matrix by changing the ith column of A by 1, and set

αi = 1− ai(i+1), βj = aj(j+2) − 1, i, j ∈ {1, 2, 3},

in which the induces are understood by mode 3.
By Proposition 2.5, D ̸= 0, then we have pi = Di/D, and it is easy

to verify that −1 is an eigenvalue of variational matrix of F at P with
associated eigenvector (p1, p2, p3)

τ . Hence, we assume that −1, λ1, λ2 are
the three eigenvalues of DFP . A routine computation yields λ2 + λ3 =
(β1β2β3 − α1α2α3)/D, and one can see [34] for more.

Proposition 3.2. For every system A from any of the nullcline classes 26
to 33, D > 0.

The proof is similar as that of Lotka-Volterra systems in [4], so we omit
it here.

Now we present the sufficient and necessary condition for Hopf bifurcation
to occur in classes 26 to 33. Since the proof here also shows a method to
construct systems with limit cycles, we give it clearly.

Proposition 3.3. Hopf bifurcations occur in the stable nullcline class i (26 ≤
i ≤ 33) if and only if there exists a system A with the property: β1β2β3 −
α1α2α3 = 0.

Proof. First, we note that aij ̸= 1 for i ̸= j from a series of Propositions in
next two subsections.

Assume that Hopf bifurcations occur in the stable nullcline class i (26 ≤
i ≤ 33). Given a system A from class i, recall that λ2 + λ3 = (β1β2β3 −
α1α2α3)/D, so the necessity is obvious.

Conversely, suppose that there exists a system A from class i satisfying
β1β2β3−α1α2α3 = 0, i.e., (a13−1)(a21−1)(a32−1)−(1−a12)(1−a23)(1−a31) =
0. We will show that Hopf bifurcations occur in the stable nullcline class i.

It is clear that at least two of α1, α2, α3 are with the same sign, say α1, α2.
Let P be the interior fixed point of A, and −1, λ2, λ3 be the eigenvalues of
DFP . Note that λ2+λ3 = 0 and λ2λ3 > 0, thus (λ2+λ3)

2−4λ2λ3 < 0. That
is, λ2, λ3 form a purely imaginary complex-conjugate pair. Since λ2, λ3 are
continuous with respect to aij, there is a µ1 > 0 such that for |µ| < µ1, the
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eigenvalues of the variational matrix DF µ
Pµ of Aµ(a12, a13, a21, a23, a31+µ, a32)

at P µ satisfy (λµ
2 + λµ

3)
2 − 4λµ

2λ
µ
3 < 0, that is, λµ

2 , λ
µ
3 are a simple pair of

complex-conjugate eigenvalues. Recall that A is nullcline stable, then there
is a neighborhood U of A such that for ∀B ∈ U , B is stable and nullcline
equivalent to A. Thus there exists a µ0 satisfying 0 < µ0 < µ1 such that for
|µ| < µ0, Aµ is stable and nullcline equivalent to A, that is, Aµ is in class i

and DF µ
Pµ has a simple pair of complex conjugate eigenvalues λ(µ), λ(µ) and

the other −1.
Let g(µ) = βµ

1 β
µ
2 β

µ
3 − αµ

1α
µ
2α

µ
3 , h(µ) = Dµ. Clearly, for any |µ| <

µ0, h(µ) > 0, and h(0) = D, g(0) = 0. Actually,

g(µ) = βµ
1 β

µ
2 β

µ
3 − αµ

1α
µ
2α

µ
3

= (a13 − 1)(a21 − 1)(a32 − 1)− (1− a12)(1− a23)(1− a31 − µ)
= (1− a12)(1− a23)µ.

Set λ(µ) = α(µ)+ iω(µ), thus α(µ) = g(µ)
2h(µ)

. So we have α(0) = g(0)/2h(0) =

0 and α′(µ) = (g′(µ)h(µ)− g(µ)h′(µ))/2h2(µ). Then

α′(0) =
g′(0)h(0)− g(0)h′(0)

2h2(0)
=

(1− a12)(1− a23)

2D
> 0.

Now we can apply Hopf bifurcation theorem to obtain the conclusion.

Proposition 3.4. Let system A be nullcline stable. Suppose the parameters
aij satisfy the following inequalities

aijaji ≥ 1(≤ 1), aijajk + ajiaik − aik − ajk ≥ 0(≤ 0), (6)

where i, j, k are distinct, then the system has no nontrivial periodic orbit.

Proof. We consider two possibilities:
(I) All the inequalities in (6) are equalities, i.e.,

aijaji = 1, aijajk + ajiaik − aik − ajk = 0.

(II) There exists a strict inequality in (6).
If (I) holds, by assumption of nullcline stability for A, aij ̸= 1 for i ̸= j,

then we get aij = aikakj. (Here i, j, k are distinct.) Now one can easily check
that the corresponding system for this case is in the class 1 (see Fig. 2),
hence the system has no nontrivial periodic orbit.
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If (II) holds, note that Yu, Wang and Lu [34] have given a criterion for
nonexistence of periodic orbits by the method of Busenberg and van den
Driessche (see [35, 8]). In the proof of Theorem 3.1 of [34], they actually
verified that if the strict inequality

[ 1
x3
( a21−1
a21x1+x2+a23x3

+ a12−1
x1+a12x2+a13x3

)

+ 1
x2
( a31−1
a31x1+a32x2+x3

+ a13−1
x1+a12x2+a13x3

)

+ 1
x1
( a32−1
a31x1+a32x2+x3

+ a23−1
a21x1+x2+a23x3

)] > 0(< 0)

(7)

holds, then the system has no nontrivial periodic orbit (see (3.11) in [34]).
By calculation, it is not difficult to see the above strict inequality holds in
this case.

Since the possibilities (I) and (II) are exhaustive, the proposition is proved.

3.2. Families with Hopf bifurcations

In this subsection we shall show that Hopf bifurcations occur in the stable
nullcline classes 26 and 27, which is the same as that on Lotka-Volterra
models. See [4].

Proposition 3.5. A system is in the nullcline class 26 if and only if aij
satisfy

(i) a12 > 1, a13 < 1, a21 < 1, a23 > 1, a31 < 1, a32 > 1,

(ii) a12(1− a23) + a13(1− a32) + a23a32 − 1 < 0, and

(iii) a21(1− a13) + a23(1− a31) + a13a31 − 1 < 0,

where aij are given by modulo permutation of the indices. The stable nullcline
class 26 admits a Hopf bifurcation and, consequently, periodic orbits.

Proof. The algebraic inequalities amongst the parameters can be translated
into easily by the nullcline configuration of the stable nullcline class 26.

Let A be a given system from nullcline class 26. Set

g1(A) = a12(1− a23) + a13(1− a32) + a23a32 − 1,
g2(A) = a21(1− a13) + a23(1− a31) + a13a31 − 1,
g(A) = (a13 − 1)(a21 − 1)(a32 − 1)− (1− a12)(1− a23)(1− a31).

Let the parameter a12 vary and the others be fixed. Then g1 is decreasing
with respect to a12 and g2 is constant. So as a12 → ∞, the new parameters
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aij satisfy (i), (ii), (iii) all the same, i.e., the new system A given by aij is
still in nullcline class 26, and g(A) → −∞ < 0. First, we choose some a12
sufficiently large, such that system A = (aij) is in nullcline class 26, and
g(A) < 0.

Note that, with respect to a31, g2 is decreasing and g1 is constant. Then
based on the systemA chosen by last step, we let a31 → 1, the new parameters
aij always satisfy (i), (ii) and (iii), i.e., the new system A given by aij is still
in nullcline class 26, and we have g(A) → (a13−1)(a21−1)(a32−1) > 0. Since
g(A) is continuous with respect to a31, there exists some a31 < 1, such that
A = (aij) is in nullcline class 26 satisfying g(A) = 0, i.e., β1β2β3−α1α2α3 = 0.
Now the existence of Hopf bifurcation follows from Proposition 3.3.

Proposition 3.6. A system is in the nullcline class 27 if and only if aij
satisfy

a12 > 1, a13 < 1, a21 < 1, a23 > 1, a31 > 1, a32 < 1,

where aij are given by modulo permutation of the indices. The stable nullcline
class 27 admits a Hopf bifurcation and, consequently, periodic orbits.

Proof. The algebraic inequalities amongst the parameters can be translated
into easily by the nullcline configuration of the stable nullcline class 27.

Let g(A) = (a13 − 1)(a21 − 1)(a32 − 1) − (1 − a12)(1 − a23)(1 − a31).
Note that given a system A = (aij) from the stable nullcline class 27, for
all a31 > 1, the system is always in nullcline class 27. Thus let a31 → 1,
we have g(A) → (a13 − 1)(a21 − 1)(a32 − 1) < 0, and let a31 → ∞, we have
g(A) → ∞ > 0. Since g(A) is continuous with respect to a31, there exists
some a31 > 1, such that A = (aij) is in nullcline class 27 with the property:
g(A) = 0, i.e., β1β2β3 − α1α2α3 = 0. The existence of Hopf bifurcation
follows from Proposition 3.3.

We now note that any system in the class 27 has a heteroclinic cycle
R1 → R2 → R3 → R1 of May-Leonard type (respectively with the arrows
reversed). Let λij be the external eigenvalue at the equilibrium Ri in the
direction j which is given by − ln aji, and set

pλ := λ12λ23λ31 + λ13λ32λ21 = −(ln a12 ln a23 ln a31 + ln a21 ln a32 ln a13). (8)

According to the results in [36], we have the following proposition.

Proposition 3.7. The heteroclinic cycle is stable when pλ < 0 and the het-
eroclinic cycle is unstable when pλ > 0.
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Remark 3.1. Using (6), we can present a system in the class 27 that has
May and Leonard phenomenon: the system exhibits a general class of solu-
tions with non-periodic oscillations of bounded amplitude but ever-increasing
cycle time; asymptotically, the system cycles from being composed almost
wholly of population 1, to almost wholly 2, to almost wholly 3, back to al-
most wholly 1 etc. In mathematical language, almost all ω limit sets are the
boundary of the carrying simplex Σ. See the Example 4.4 in the next section.

3.3. Families without Hopf bifurcations

In this subsection, we shall show that within each of the stable nullcline
classes 28 to 31 there are no Hopf bifurcations, and any system in classes
32 and 33 has no periodic orbits, in which all compact limit sets are fixed
points.

Proposition 3.8. A system is in the nullcline class 28 if and only if aij
satisfy

(i) a12 > 1, a13 < 1, a21 > 1, a23 > 1, a31 > 1, a32 < 1,

(ii) a31(1− a12) + a32(1− a21) + a12a21 − 1 < 0,

where aij are given by modulo permutation of the indices. The interior fixed
point P of each system from class 28 is hyperbolic and a repeller on Σ, hence
there are no Hopf bifurcations within nullcline class 28.

Proof. The algebraic inequalities amongst the parameters can be translated
into easily by the nullcline configuration of the stable nullcline class 28.

By the conditions (i) and (ii), we have (a13 − 1)(a21 − 1)(a32 − 1) > 0,
(1−a12)(1−a23)(1−a31) < 0, thus (a13− 1)(a21− 1)(a32− 1)− (1−a12)(1−
a23)(1− a31) > 0, i.e., β1β2β3−α1α2α3 > 0. Recall that λ2+λ3 = (β1β2β3−
α1α2α3)/D, then both of λ2 and λ3 have positive real part, where λ2, λ3 are
the other two eigenvalues of DFP except −1. So the interior fixed point P
of each system from class 28 is hyperbolic and a repeller when restricted to
Σ and hence within nullcline class 28 there is no Hopf bifurcation.

Remark 3.2. This is subtly different from that on Lotka-Volterra systems,
for which there exists Hopf bifurcation in class 28. Moreover, even in the
subset those with aii = 1 of Lotka-Volterra models corresponding to Gom-
pertz models there also exists Hopf bifurcation. See [4]. While Example 4.2
in the following shows that it is possible to have limit cycles in the class 28.
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Proposition 3.9. A system is in the nullcline class 29 if and only if aij
satisfy

(i) a12 < 1, a13 > 1, a21 < 1, a23 < 1, a31 < 1, a32 > 1,
(ii) a31(1− a12) + a32(1− a21) + a12a21 − 1 < 0,

where aij are given by modulo permutation of the indices. The interior fixed
point P of each system from class 29 is hyperbolic and always locally asymp-
totically stable, hence within nullcline class 29 there are no Hopf bifurcations.

Proof. The algebraic inequalities amongst the parameters can be translated
into easily by the nullcline configuration of the stable nullcline class 29.

By the conditions (i) and (ii), we have (a13 − 1)(a21 − 1)(a32 − 1) < 0,
(1 − a12)(1 − a23)(1 − a31) > 0, thus (a13 − 1)(a21 − 1)(a32 − 1) − (1 −
a12)(1− a23)(1− a31) < 0, i.e., β1β2β3 − α1α2α3 < 0. Recall that λ2 + λ3 =
(β1β2β3−α1α2α3)/D, then both of λ2 and λ3 have negative real part. So the
interior fixed point P of each system from class 29 is hyperbolic and always
locally asymptotically stable. Thus, there are no Hopf bifurcations among
nullcline class 29 .

Remark 3.3. This is subtly different from that on Lotka-Volterra systems,
for which there exists Hopf bifurcation in class 29. Moreover, even in the sub-
set those with aii = 1 of Lotka-Volterra models corresponding to Gompertz
models there also exists Hopf bifurcation. See [4].

Proposition 3.10. A system is in the nullcline class 30 if and only if aij
satisfy

(i) a12 > 1, a13 < 1, a21 > 1, a23 > 1, a31 > 1, a32 > 1,
(ii) a12(1− a23) + a13(1− a32) + a23a32 − 1 < 0,
(iii) a31(1− a12) + a32(1− a21) + a12a21 − 1 < 0,

where aij are given by modulo permutation of the indices. The interior fixed
point P of each system from class 30 is hyperbolic and a repeller on Σ, hence
within nullcline class 30 there are no Hopf bifurcations.

Proof. The algebraic inequalities amongst the parameters can be translated
into easily by the nullcline configuration of the stable nullcline class 30.

First, we claim that a12 > a32. Otherwise, then by condition (i) we have

a12(1− a23) + a13(1− a32) + a23a32 − 1
≥ a32(1− a23) + a13(1− a32) + a23a32 − 1
= (a32 − 1)(1− a13) > 0,

15



contradicting to (ii). Then the claim holds, which implies that

a23 >
a12 + a13 − a32a13 − 1

a12 − a32
.

Thus

a23 − 1 >
a12 + a13 − a32a13 − 1

a12 − a32
− 1 =

(a32 − 1)(1− a13)

a12 − a32
.

By condition (iii), we have

a31 − 1 >
a32 − 1 + a12a21 − a32a21

a12 − 1
− 1 =

(a21 − 1)(a12 − a32)

a12 − 1
.

Now

(a13 − 1)(a21 − 1)(a32 − 1) + (a12 − 1)(a23 − 1)(a31 − 1)
> (a13 − 1)(a21 − 1)(a32 − 1) + (1− a13)(a21 − 1)(a32 − 1) = 0.

Recall that λ2 + λ3 = (β1β2β3 − α1α2α3)/D, then both of λ2 and λ3 have
positive real part. So the interior fixed point P of each system from class 30
is hyperbolic and a repeller on Σ and hence within nullcline class 30 there
are no Hopf bifurcations.

Remark 3.4. This is subtly different from that on Lotka-Volterra systems,
for which there exists Hopf bifurcation in class 30. Moreover, even in the sub-
set those with aii = 1 of Lotka-Volterra models corresponding to Gompertz
models there also exists Hopf bifurcation. See [4].

Proposition 3.11. A system is in the nullcline class 31 if and only if aij
satisfy

(i) a12 < 1, a13 > 1, a21 < 1, a23 < 1, a31 < 1, a32 < 1,

(ii) a12(1− a23) + a13(1− a32) + a23a32 − 1 < 0,

(iii) a31(1− a12) + a32(1− a21) + a12a21 − 1 < 0,

where aij are given by modulo permutation of the indices. The interior fixed
point P of each system from class 31 is hyperbolic and locally asymptotically
stable, hence within nullcline class 31 there are no Hopf bifurcations.
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Proof. The algebraic inequalities amongst the parameters can be translated
into easily by the nullcline configuration of the stable nullcline class 31.

First, by conditions (i) and (ii) we have

a13 <
a12 − 1 + a32a23 − a12a23

a32 − 1
,

then

a13 − 1 <
a12 − 1 + a32a23 − a12a23

a32 − 1
− 1 =

(a23 − 1)(a12 − a32)

1− a32
.

And by conditions (i) and (iii),

a31 − 1 <
a32 − 1 + a12a21 − a32a21

a12 − 1
− 1 =

(a21 − 1)(a12 − a32)

a12 − 1
.

Now

(a13 − 1)(a21 − 1)(a32 − 1) + (a12 − 1)(a23 − 1)(a31 − 1)
< −(a23 − 1)(a21 − 1)(a12 − a32) + (a23 − 1)(a21 − 1)(a12 − a32) = 0.

Recall that λ2 + λ3 = (β1β2β3 − α1α2α3)/D, then both of λ2 and λ3 have
negative real part. So the interior fixed point P of each system from class
31 is hyperbolic and locally asymptotically stable, and hence within nullcline
class 31 there are no Hopf bifurcations.

Remark 3.5. This is subtly different from that on Lotka-Volterra systems,
for which there exists Hopf bifurcation in class 31. Moreover, even in the sub-
set those with aii = 1 of Lotka-Volterra models corresponding to Gompertz
models there also exists Hopf bifurcation. See [4].

Proposition 3.12. A system is in the nullcline class 32 if and only if aij
satisfy

(i) a12 > 1, a13 > 1, a21 > 1, a23 > 1, a31 > 1, a32 > 1,

(ii) a12(1− a23) + a13(1− a32) + a23a32 − 1 < 0,

(iii) a21(1− a13) + a23(1− a31) + a13a31 − 1 < 0,

(iv) a31(1− a12) + a32(1− a21) + a12a21 − 1 < 0,

where aij are given by modulo permutation of the indices. The stable null-
cline class 32 has no nontrivial periodic orbits, and the interior fixed point is
hyperbolic and a repeller on Σ, every trajectory converges to one of the fixed
points Ri, i ∈ {1, 2, 3}.
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Proof. The algebraic inequalities amongst the parameters can be translated
into easily by the nullcline configuration of the stable nullcline class 32.

By the condition (i) and Proposition 3.4, we obtain that any system in
the stable nullcline class 32 has no nontrivial periodic orbits. It is easy to
see that

β1β2β3−α1α2α3 = (a13−1)(a21−1)(a32−1)− (1−a12)(1−a23)(1−a31) > 0,

i.e., λ2+λ3 = (β1β2β3−α1α2α3)/D > 0. Thus P is hyperbolic and a repeller
on Σ, and by Poincaré-Bendixson theory we have every trajectory converges
to one of the fixed points Ri, i ∈ {1, 2, 3}.

Proposition 3.13. A system is in the nullcline class 33 if and only if aij
satisfy

(i) a12 < 1, a13 < 1, a21 < 1, a23 < 1, a31 < 1, a32 < 1,

(ii) a12(1− a23) + a13(1− a32) + a23a32 − 1 < 0,

(iii) a21(1− a13) + a23(1− a31) + a13a31 − 1 < 0,

(iv) a31(1− a12) + a32(1− a21) + a12a21 − 1 < 0,

where aij are given by modulo permutation of the indices. The stable nullcline
class 33 has no nontrivial periodic orbits, hence the interior fixed point P is
hyperbolic and globally asymptotically stable in intR3

+.

Proof. The algebraic inequalities amongst the parameters can be translated
into easily by the nullcline configuration of the stable nullcline class 33.

From the condition (i) and Proposition 3.4 any system in the stable null-
cline class 33 has no nontrivial periodic orbits. It is easy to see that

β1β2β3−α1α2α3 = (a13−1)(a21−1)(a32−1)− (1−a12)(1−a23)(1−a31) < 0,

i.e., λ2 + λ3 = (β1β2β3 − α1α2α3)/D < 0. Thus P is hyperbolic and an
attractor, and by Poincaré-Bendixson theory, it is globally asymptotically
stable in intR3

+.

Remark 3.6. The behavior on the carrying simplex of class 32 and class 33
is the same as that of Lotka-Volterra models. See [8].

Theorem 3.14. Suppose a three-dimensional competitive Gompertz system
has a nontrivial periodic orbit. Then one of the following holds
(i) the number of periodic orbits is finite;
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(ii) there are countably infinite periodic orbits, which accumulate at a poly-
cycle;
(iii) intΣ is composed of nontrivial periodic orbits except the interior fixed
point P .
The cases (ii) and (iii) only occur in the class 27.

Proof. The proof for the Lotka-Volterra systems in [10] carry over to the
Gompertz models here in a straightforward way.

We see that if system (5) has not any heteroclinic polycycles, then the
number of limit cycles of system (5) is finite, hence the number of limit cycles
of system (5) is finite except nullcline class 27. In the class 27, the number
of limit cycles is still finite if pλ ̸= 0.

4. Some examples

In this section, we investigate bifurcations and May and Leonard phe-
nomenon of some three-dimensional competitive Gompertz systems. In Ex-
ample 4.2, we obtain a family of systems with at least one limit cycle, and we
have conducted numerical experiments to survey the properties of the limit
cycles. We find that as the parameter varying, the system changes from class
27 to class 28 and there exist at least two limit cycles. In Example 4.3, we
construct a family of systems of class 27 with at least two limit cycles. In
Example 4.4, we construct two systems with a heteroclinic polycycle to be
the global attractor, which shows that there exist systems in the class 27 to
possess May and Leonard phenomenon.

Example 4.1. Let

A =


1 4 3

4

1
4

1 5
4

15
16

5
4

1

 .

It is easy to verify that system A is in the nullcline class 26 with the interior
fixed point P = ( 4

17
, 1
17
, 12
17
), and −1,

√
30
34

i,−
√
30
34

i are the three eigenvalues of
matrix DFP . Now set

A(µ) =


1 4 3

4

1
4

1 5
4

15
16

+ µ 5
4

1

 ,
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we know that there exists some µ0 > 0 such that for |µ| < µ0, system
A(µ) is always in the nullcline class 26, and DF µ

Pµ has a simple pair of

complex-conjugate eigenvalues λ(µ), λ(µ). Let λ(µ) = α(µ) + iω(µ), then
α(µ) = 3µ/(85

4
+ 34µ). Clearly, α(0) = 0, and α′(0) = 12

85
> 0, hence it is a

family of systems given by A(µ) within class 26 admitting Hopf bifurcations.

Example 4.2. Now consider system

A =


1 2 1

2

11
19

1 21
20

5 1
20

1

 .

It is easy to verify that system A is in the nullcline class 27 with the in-
terior fixed point P = ( 19

259
, 80
259

, 160
259

), and −1, 4
√
458

259
i,−4

√
458

259
i are the three

eigenvalues of matrix DFP . Now set

A(µ) =


1 2 1

2

11
19

+ µ 1 21
20

5 1
20

1

 ,

we know that there exists some µ0 > 0 such that for |µ| < µ0, system
A(µ) is always in the nullcline class 27, and DF µ

Pµ has a simple pair of

complex-conjugate eigenvalues λ(µ), λ(µ). Let λ(µ) = α(µ) + iω(µ), then
α(µ) = 19µ/(59311

95
− 158µ). Clearly, α(0) = 0, and α′(0) = 1805

59311
> 0,

hence it is a family of systems given by A(µ) within class 27 admitting Hopf
bifurcations. To determine the stability properties of these periodic orbits, it
is enough to study the stability of P = ( 19

259
, 80
259

, 160
259

) of system A, which can
be reduced to the study of the corresponding equations on a center manifold
of P .

By calculating we obtain that the singular point P of system A is a stable
focus with the first negative focal value −1.547628679. Since the focal value
is a rather lengthy expression, the exact value was computed as a rational
by computer. Now by Hopf bifurcation theorem, we know that system A(µ)
admits a stable limit cycle when 0 < µ ≪ 1. And recall the phase portrait of
class 27, the system always has a heteroclinic polycycle with three saddles.
It is easy to check that pλ = − ln(2) ln(21

20
) ln(5)− ln(2) ln(20) ln(11

19
+ µ) > 0

when 0 < µ ≪ 1, which determines that the heteroclinic polycycle of system
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A(µ) is unstable. Hence system A(µ) has at least one limit cycle when
0 < µ ≪ 1.
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Figure 4: A family of stable limit cycles occur as a21 increasing.
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Figure 5: The period of the limit cycles increases as a21 increasing, and even if a21 > 1
the periodic orbit also occurs.

Now we use the graphing capability of Matlab [37, 38] to illustrate the
properties of the limit cycles as the parameter µ varying in this example.
Take µ = 0 as the initial value, with which the system is in the nullcline
class 27. As µ increasing, i.e., a21 increasing, we see that the system Aµ has
a stable limit cycle with the period increasing. See Fig. 4 and Fig. 5. And
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in Fig. 5 we find that the periodic orbit also occurs even if a21 > 1, and in
some interval the system which is now in the nullcline class 28 has at least
two limit cycles.

Example 4.3. Consider the system

A =


1 200 1

2

1
2

1 2

1593
1592

1
2

1

 .

It is easy to verify that system A is in the nullcline class 27 with the interior
fixed point P = ( 796

1195
, 1
1195

, 398
1195

), and −1,
√
18164592242
571210

i,−
√
18164592242
571210

i are the
three eigenvalues of matrix DFP . Now let

A(µ) =


1 200 1

2

1
2

1 2

1593
1592

+ µ 1
2

1

 ,

we know that there exists some µ0 > 0 such that for |µ| < µ0, system A(µ)
is always in the nullcline class 27, and DF µ

Pµ has a simple pair of complex-

conjugate eigenvalues λ(µ), λ(µ). Let λ(µ) = α(µ)+ iω(µ), then it is easy to
see that α(0) = 0 and α′(0) > 0. Hence it is a family of systems given by
A(µ) within class 27 admitting Hopf bifurcations. To determine the stability
properties of these periodic orbits, it is enough to study the stability of
P = ( 796

1195
, 1
1195

, 398
1195

) of system A, which can be reduced to the study of the
corresponding equations on a center manifold of P .

By calculating we obtain that the singular point P of system A is an
unstable focus with the first positive focal value 0.04578207028. Since the
focal value is a rather lengthy expression, the exact value was computed as
a rational by computer. Now by Hopf bifurcation theorem, we know that
system A(µ) admits an unstable limit cycle when −1 ≪ µ < 0. And recall
the phase portrait of class 27, the system always has a heteroclinic polycycle
with three saddles. It is easy to check that pλ = − ln(200) ln(2) ln(1593

1592
+

µ) + ln3(2) > 0 when −1 ≪ µ < 0, which determines that the heteroclinic
polycycle of system A(µ) is unstable. So there exists a stable limit cycle
between the unstable limit cycle and the heteroclinic polycycle. Hence system
A(µ) has at least two limit cycles when −1 ≪ µ < 0.
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Example 4.4. Consider the system

A =


1 4 1

2

1
2

1 4

4 1
2

1

 .

It is easy to check that system A is in the nullcline class 27 with the in-
terior fixed point P = ( 2

11
, 2
11
, 2
11
), and aij satisfy condition (6), hence by

Proposition 3.4 we get system A has no nontrivial periodic orbit. Since
pλ = −7 ln3(2) < 0 and (a13−1)(a21−1)(a32−1)−(1−a12)(1−a23)(1−a31) =
215
8

> 0, P repels and the heteroclinic polycycle is a global attractor.
Now we consider the new system

A =


1 2 1

2

1
2

1 2

2 1
2

1

 ,

which is still in the nullcline class 27 with the interior fixed point P =
(2
7
, 2
7
, 2
7
), and it is easy to check that pλ = 0. Clearly, aij satisfy condition

(6), hence by Proposition 3.4 we get this system has no nontrivial periodic
orbit. Since (a13−1)(a21−1)(a32−1)− (1−a12)(1−a23)(1−a31) =

7
8
> 0, P

repels which implies that the heteroclinic polycycle is also a global attractor.
See Fig. 6.

5. Conclusions

This paper has investigated the model of three competitive species, each
of which, in isolation, admits Gompertz growth. What we are concerned
is its saturation level, i.e., its long-run behavior in mathematical language.
Then we compare three dimensional competitive Gompertz models with three
dimensional competitive Lotka-Volterra models.

We have presented the complete classification for nullcline stability and
arrived at the total of 33 stable nullcline classes which is the same as that
of three dimensional competitive Lotka-Volterra systems CLV(3) (see [4])
although CG(3) has six independent parameters, while CLV(3) has eight in-
dependent parameters. We have shown that all fixed points are hyperbolic
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Figure 6: The solution of system A approaches the heteroclinic polycycle.

and all the compact limit sets are fixed points in classes 1 − 25, 32 and 33.
This makes us to conjecture any system in these 27 classes are structurally
stable. Despite the common results, we go on to show that the behavior
on the carrying simplex of Gompertz systems is subtly different from that
on Lotka-Volterra systems, and even the subset of Lotka-Volterra models (
those with aii = 1 ) corresponding to Gompertz models do not have the same
limitations of behavior. As far as periodic solutions are concerned, there are
distinct differences between three dimensional Lotka-Volterra systems and
Gompertz systems. For Lotka-Volterra systems, nontrivial periodic solution-
s only occur in classes 26 to 31 (see [4] and [8]) and Hopf bifurcations do
occur in the classes 26 to 31, hence there possibly exist nontrivial periodic
solutions in these six classes. However, for Gompertz systems, Hopf bifur-
cations only occur in classes 26 and 27 and there are no Hopf bifurcations
in classes 28− 31 because the interior fixed point is hyperbolic in these four
classes. From the phase portraits in classes 28 − 31 of Fig. 3, if there exist
limit cycles which are hyperbolic, then there are at least two limit cycles.
The numerical stimulation reveals that there are some systems in class 28
with at least two limit cycles whose amplitudes are surely not small. We
have carried out numerous numerical experiments within classes 29− 31 but
havn’t found any nontrivial periodic solution. Whether the classes 29, 30 and
31 have limit cycles or not remains open. In the class 27, there exists a het-
eroclinic polycycle. Logically, there are four types of asymptotic behavior:
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the interior fixed point is globally asymptotically stable; there is at least one
limit cycle; the heteroclinic polycycle is globally asymptotically stable; and
intΣ is completely filled with periodic orbits. For Lotka-Volterra systems,
all four cases happen in the class 27 ( see [4] and [39]). Although we have
proved this class can bifurcate one and two limit cycles ( see Examples 4.2
and 4.3 ) and provided a criterion for the interior fixed point and the hetero-
clinic polycycle to be globally asymptotically stable (see Proposition 3.4 and
Example 4.4), we cannot give an example such that the interior fixed point
is a center on Σ which holds when the heteroclinic polycycle is neutral in
symmetric and asymmetric May-Leonard systems (see [39]). However, this
result does not hold in class 27 of Gompertz systems (see Example 4.4). It is
an open problem whether three dimensional competitive Gompertz systems
have a center on Σ. It is proved that the number of limit cycles is finite in
classes 26, 28− 31. The maximum number of limit cycles that occur in each
of classes 26 to 31 remains open.

Permanence only occur in classes 29, 31, 33 and 27 with the heteroclinic
polycycle unstable.

The parameter conditions on each class can be easily translated from the
configuration.
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